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SUMMARY

Some methods to test the randomness of the numbers drawn in the UK National Lottery
are described. The data for the ®rst 96 draws are consistent with the numbers being drawn
at random, both in terms of the individual frequencies and of the waiting times for
successive appearances. The number combinations chosen by gamblers are shown to be far
from random, as a whole: data from the UK and other countries demonstrate that certain
combinations are much more popular than average, and thus the skill to identify unpopular
combinations can increase the mean return. Families of models of gambler choice are
described, but, despite some encouraging indications, they all have signi®cant de®ciencies.
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1. INTRODUCTION

The main National Lottery game in the UK has the same structure as `lotto' games
conducted elsewhere, for which data generated over many years can be obtained. A
gambler pays £1 for the right to select six di�erent numbers from the list {1, 2, 3, . . .,
49} and will win a prize if at least three of these choices are in common with the
numbers on six similarly numbered balls, drawn `at random' from a set of 49
identically composed balls. The order of the numbers is immaterial. A seventh
`bonus' ball is drawn but is relevant only when a gambler matches exactly ®ve of the
numbers on the main balls drawn. Fuller details are given in Moore (1997).

The data that are available for the UK National Lottery have been the numbers
drawn, the numbers of tickets sold and the numbers of prize-winners (plus the sizes
of the prizes) in the ®rst 96 draws from November 19th, 1994, to September 14th,
1996. Up-to-date information can be found on the Internet site

http://www.connect.org.uk/lottery

shortly after each draw. For the Canadian lotto 6/49, which is conducted on almost
identical lines, we have the corresponding data for all 1211 draws made from its
inception to the end of August 1995, except for the number of tickets sold and the
number of `match 3' prizes. But we can give reasonable estimates of the number of
tickets sold from knowledge of the prize structure, the numbers of prize-winners and
the sizes of the prizes. Riedwyl (1990) has published the winning combinations for 20
years of the Swiss lotteries and extensive data on gambler choice in one particular
draw.
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2. ARE THE NUMBERS DRAWN `RANDOM'?

The gambling public needs to be assured that the draw is conducted fairly, and
that all the number combinations have an equal chance of being selected. Whatever
physical checks are made on the process, and whatever steps are taken to ensure the
integrity of the draw, the best assurance comes from statistical considerations: do the
numbers drawn pass reasonable tests of `randomness'? Bellhouse (1982a, b) reported
that the di�erent Canadian lottery corporations varied widely in their quality control
procedures, with some lottery data suggesting that true randomness was not being
achieved. Camelot, the UK lottery franchisees, commission an independent body,
BSI Test, to carry out tests both on the numbers drawn live and others using the
lottery machines under controlled conditions, but they do not disclose the speci®c
statistical outcomes. These tests are outlined in Appendix A.
Joe (1993) examined the question of testing randomness for an m=M lotto, i.e.

when m numbers are to be selected at random from the integers {1, 2, . . ., M}. Let

M* � M

m

� �
denote the total number of possible combinations, and let B1�d� <. . .< Bm�d� denote
the m numbers selected in draw d, for d � 1, 2, . . ., D. The null hypothesis H0 is that
all M* combinations are equally likely, and the draws are independent. Joe derived
tests of uniformity for the distributions of single numbers, pairs and triples, and of
independence between draws. He pointed out (as did Stern and Cover (1989)) that
the usual goodness-of-®t statistic � �Ok ÿ Ek�2=Ek needs modi®cation if it is to be
used with the �2-distribution; in the univariate case this is achieved by a scale factor
(see test A below), but the other tests need additional terms to account for the
overlaps between distinct k-tuples. The test statistics for m=M lottos are given
explicitly in Joe's work, and their distributions are shown to be asymptotically �2.
For a 6/49 lottery, this test statistic for a uniform distribution of pairs � � �i, j�,
where i < j, within the same draw is

W � 90:59
X
�

�O� ÿ E�2 ÿ 1:632
X

m��; ���1
�O� ÿ E��O� ÿ E�

( )�
D

as a �2
1175-distribution. Here E � 5D=392, and the second sum is over all (�, �) which

have exactly one member in common. Similarly, to test independence between pairs
of successive draws, write � � �i, j � with i in draw d and j in draw d� 1. The test
statistic is

W � 80:22
X
�

�O� ÿ E�2 ÿ 1:443
X

u��; ���1
�O� ÿ E��O� ÿ E�

��
�Dÿ 1�

(
as a �2

2400-distribution. Here E � 36�Dÿ 1�=2401, and the second sum is over (�, �)
in which either the ®rst or the second (but not both) members of � and � are the same.
It will be several years before D is su�ciently large for a meaningful test from this

family to be made on the data from the UK National Lottery, other than on
individual frequencies. However, Joe's (1993) tests, applied to several thousand
draws, seem appropriate for the veri®cation that the lottery equipment behaves as
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intended. They would also be useful to test the lucky dip facility, available from draw
71 on March 17th, 1996, whereby gamblers can allow Camelot's computers to choose
their selections supposedly at random.

Johnson and Klotz (1993) took a di�erent approach for data on a similar
American lottery. They supposed that ball i had probability pi of being selected ®rst,
and the probabilities on the second and subsequent selections were simply rescaled to
take account of the balls already drawn. Their data consisted of the numbers drawn,
in the order that they were drawn, over 200 draws. They tested the null hypothesis of
uniformity, using the usual log-likelihood statistic, noting that this approach has the
twin advantages of taking account of the information in the order of selection and of
giving a clear alternative model if the null hypothesis is rejected. Their data gave mild
evidence against uniformity (p-value 0.084), which they linked with the observation
that the balls enter the mixing machine in the same order each draw (as happens in
the UK).

Morgan (1984) noted that the criterion of `®tness for purpose' may suggest certain
speci®c tests on sets of allegedly random numbers, in addition to obvious tests such
as equality of frequency and lack of pairwise dependence, but that there can be no
expectation of full agreement on a unique, universally acceptable set of tests. For
m=M lottos, there are several alternative hypotheses to the null hypothesis of equality
of frequency that we might wish to have high power to detect:

(a) HA1Ðone number has probability m=M� � of selection; the other Mÿ 1
have probability m=Mÿ �=�Mÿ 1�, for some � 6� 0;

(b) HA2Ðhalf the numbers have probability m=M� �; the other half have
probability m=Mÿ �, for some � 6� 0;

(c) HA3 or HA4Ðfor each i � 1, 2, . . ., M, given that i has been selected, then
either HA1 or HA2, with (m, M) replaced by �mÿ 1, Mÿ 1�.

If it proves reasonable to assume equality of frequency, then tests of independence
between draws can be based on the distribution of the lengths of intervals between
occurrences of each and every number i. Note that, sincem numbers are selected each
draw, the whole collection of interval lengths are not independent. (After one draw,
there must be m values, all equal to 1.)

We o�er several possible tests and report the results of applying them to the six
main numbers drawn in the UK lottery in Table 1.

2.1. Test A: Equality of Marginal Frequencies
In D draws, suppose that ball k is drawn Xk times; under hypothesis H0,

E�Xk� � mD=M, and the usual goodness-of-®t statistic must be modi®ed, as noted
earlier, to adjust for the sampling of m balls at a time without replacement. This
statistic reduces to

M�Mÿ 1�
X

X2
k ÿm2D2=M

� �
�Mÿm�Dm

�W �say� �1�

to be compared with a �2
Mÿ1-distribution (when D is su�ciently large, of course). It is

easy to calculate that
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E�WjHA1� �Mÿ 1� �
2M2�Dÿ 1�
m�Mÿm� ,

and that

E�WjHA2� �Mÿ 1� �
2M�Mÿ 1��DÿM=m�

Mÿm
:

Hence, for example, a conventional 5% signi®cance test applied to data from a 6/49
lotto would need about 1.8/�2 draws to have a 50% chance of detecting HA1.

2.2. Test B: Independence between Draws
For any ®xed number i, let W1 denote the number of draws until i ®rst appears.

Similarly, let W2, W3, . . . be the numbers of draws between later successive
appearances of i. Under hypothesis H0 any Wr has the geometric distribution,

P�Wr � k� � Mÿm

M

� �kÿ1
m

M
,

with the values of Wr relating to any ®xed i being independent (but not, as noted, the
whole set of Ws across the M numbers). For each i, we have observations on W1�i�,
W2�i�, : : :, Wx�i��i�, and a `censored' value W0�i� (say) that denotes 1 plus the number
of draws since the last appearance of i. The identitiesXx�i�

r�0
Wr�i� � D (for each i in turn)
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TABLE 1

Data relating to tests A±D, applied to the six main numbers drawn in the ®rst 96 draws of the UK National
Lottery

Test A: individual frequencies of 1! 49{
8 14 9 14 17 11 12 8 9 9 15 12 10 15 12 13 15 13 7 7 10 13 10 7 15
14 9 16 11 13 12 13 13 11 10 8 8 14 4 12 13 15 11 21 14 12 12 15 10

Test B{
Gap size 1 2 3 4 5 6 7 8 9 10 11 12 13
Observed 71 58 65 45 48 28 41 27 27 21 16 19 20
Expected 75.78 65.88 57.23 49.7 43.19 37.54 32.64 28.35 24.61 21.38 18.58 16.1 13.96
Gap size 14 15 16 17 18 19 20 21±22 23±24 25±27 28±31 5 32
Observed 16 13 9 8 7 7 0 7 8 7 4 4
Expected 12.12 10.52 9.13 7.9 6.87 5.93 5.16 8.37 6.27 6.6 5.38 6.81

Test C
U � 152:4 Z � 0:716 V � 1189:3 �Dÿ 1�V=�2 � 105:10 �95 degrees of freedom�

Test D}
No. of even numbers 0 1 2 3 4 5 6
Observed 0 2 25 38 21 10 0
Expected 1.22 8.75 23.97 31.96 21.88 7.29 0.92

{The �2
48 goodness-of-®t statistic for equal mean frequencies has the value 43.97.

{�2-statistic (24 degrees of freedom) 21.07.
}Goodness-of-®t statistic 7.98 on 4 degrees of freedom.



and XM
i�1

x�i� � mD

give checks on the data.
We thus have mD `complete' values of Wj. However, the lack of independence

makes exact calculation of the `expected' number of gaps of size k in D draws a
complex matter, so to test the UK data we simulated 160000 sets of 96 random draws
to obtain the estimates of these values shown in Table 1 (the standard error of each is
less than 0.02).

Tests C and D give some information on possible associations between the
numbers chosen in a given draw.

2.3. Test C: Sum of the Numbers
Let

S�d� �
Xm
j�1

Bj�d�:

Then, under hypothesis H0, these sums have theoretical mean and variance
� � m�M� 1�=2 and �2 � m�M� 1��Mÿm�=12 respectively, against which we can
match the sample mean and sample variance of fS�d�: 14 d4Dg. Denoting the
latter by U and V respectively, then the test statistics are Z � �Uÿ ��=� as standard
normal, and �Dÿ 1�V=�2 as �2

Dÿ1.

2.4. Test D: Odd±Even Combinations
Let T�d� denote the number of even numbers among the m chosen in draw d.

The null distribution of T is hypergeometric, and its empirical distribution can be
compared with that expected. In the UK National Lottery, it will take some time
(about 300 draws in total) to make the expected values in all seven cells su�ciently
large to avoid combining the extreme categories {0, 1} and {5, 6} for the purposes of
a conventional goodness-of-®t test.

The successive values in Fig. 1 are very highly correlated and are only independent
when separated by 41 or more draws, but it is interesting that values below the
theoretical mean predominate, hinting at too even a spread of numbers. The results
for test D in Table 1 also have a mild suggestion that the odd±even split is insuf-
®ciently extreme, but we would expect all six numbers to have the same parity only
once in 45 draws. Overall, the tests show no signi®cant evidence of non-random
behaviour.

3. DATA ON GAMBLER CHOICE

A successful model of the distribution of gambler choice must be consistent with
what is known about these choices. However, very little information has been
released about what choices UK gamblers are making. At various stages, it has
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been reported that 10000±30000 gamblers per week have selected the combination
{1 2 3 4 5 6}, but, apart from the knowledge of the number of jackpot
winners each draw, no other speci®c information seems to have been given, not even
the frequencies of choice of individual numbers. In contrast, the British Columbia
Lottery Corporation publishes these marginal frequencies weekly for several
lotteries, including the national lotto 6/49; for example, in the two draws in the
week ending October 28th, 1995, the data in Luck (November 6th, 1995) show the
marginal frequencies of gambler choice as given in Table 2.
This ordering is very similar to that reported by Joe (1987), who gave fuller details

for the draw of July 6th, 1985; we shall refer to Joe's data as draw 161. Ziemba et al.
(1986) agreed that draw-to-draw popularity is remarkably constant, ordering the 19
least popular numbers (over 26 draws in Canada) as

40 39 20 30 41 38 42 46 29 49 48 32 10 47 1 37

28 34 45:
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Fig. 1. Goodness-of-®t statistic versus draw (this follows Bellhouse (1982b) who threw doubt on the
proper functioning of the machines in an early Canadian lottery; the successive �2-statistics, as in
equation (1), are plotted for overlapping sets of 41 consecutive draws (i.e. the ®rst point relates to draws
1±41, the next to draws 2±42, etc., the last to draws 56±96; the choice of 41 is simply to make the
expected values exceed the time-honoured `5')): the long run mean value of the statistic should be 48
(- - - -)

TABLE 2

Marginal frequencies of gambler choice

Frequency (%) Numbers (in order of increasing popularity)

[1.74, 1.79] 40 39
[1.82, 1.89] 48 41 20 45 38 46 30 42
[1.90, 1.99] 37 29 36 44 49 35 47 15 34
[2.00, 2.09] 22 14 33 32 26 28 43 10 24 21 2 16 25 23
[2.10, 2.19] 18 1 19 6 13 4 12 17 8
[2.22, 2.28] 31 27 5 9 3 11
2.65 7



Space considerations inhibit the publication of the complete distribution of the 14
million or so choices, either for one draw or for a combination of several. However,
some information on the distribution for lotteries is available. Stern and Cover
(1989) reported on the distribution of choices among 5717817 tickets in a 6/49
Californian lottery. Zaman and Marsaglia (1990) noted that the winning combina-
tion in a Florida lottery was selected by 4676 players for the next draw, and that a
further 37 previous winning combinations were each selected over 1800 times.
Perhaps the most detail is given by Riedwyl (1990) who had access to the full
distribution of gambler choice in week 6, 1990, of the Swiss 6/45 lottery. Here
M* � 8145060 and N � 16862596 tickets were sold, giving an average of 2.07
tickets per combination. Two combinations ({6 11 16 21 26 31} and
f1 8 15 22 29 36g� were each selected more than 24000 times, and 5754
combinations were each selected more than 50 times! About 7% of sales were to the
0.07% most popular tickets.

Which combinations will prove hugely popular is plainly of great interest to
gamblers. Zaman and Marsaglia (1990) and Ziemba et al. (1986) speculated that
special dates, celebrities' birthdays, scores in sports games and current events may
have transient appeal, while rows, columns or geometric patterns on the tickets may
be permanent in¯uences. The physical lay-out of some tickets is shown in Table 3.
Riedwyl's data for the Swiss ticket (Table 3, part (d)) are compelling and show how
important this lay-out can be. The two most popular combinations noted above are
the top right±lower left and top left±lower right principal diagonals; 28 further
combinations, each chosen over 2500 times, are the three other complete diagonals,
the seven rows, 11 sets of six consecutive numbers in a column, f40! 45g,
f1 2 3 43 44 45g, the near diagonal f5 10 15 20 25 30g, the win-
ning combinations from the three previous drawsÐand the winning combination in
the last French lottery! Indeed, the Swiss winning combinations for the previous year
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TABLE 3

Some lottery ticket lay-outs

(a) UK 6/49 ticket (b) Lotto 6/49 (British Columbia)
1 2 3 4 5 10 20 30 40
6 7 8 9 10 1 11 21 31 41
11 12 13 14 15 2 12 22 32 42
16 17 18 19 20 3 13 23 33 43
21 22 23 24 25 4 14 24 34 44
26 27 28 29 30 5 15 25 35 45
31 32 33 34 35 6 16 26 36 46
36 37 38 39 40 7 17 27 37 47
41 42 43 44 45 8 18 28 38 48
46 47 48 49 9 19 29 39 49

(c) Lotto 6/49 (Ontario) (d) Swiss 6/45 ticket
1 8 15 22 29 36 43 1 2 3 4 5 6
2 9 16 23 30 37 44 7 8 9 10 11 12
3 10 17 24 31 38 45 13 14 15 16 17 18
4 11 18 25 32 39 46 19 20 21 22 23 24
5 12 19 26 33 40 47 25 26 27 28 29 30
6 13 20 27 34 41 48 31 32 33 34 35 36
7 14 21 28 35 42 49 37 38 39 40 41 42

43 44 45



were all chosen at least 295 times, and only one winning combination from the
previous four years (215 draws) was chosen fewer than 59 times. The propensity of
gamblers to use winning combinations is not con®ned simply to repeating the
selection: in Riedwyl's data, the most recent winning combination was chosen 12008
times, but also the two combinations obtained by adding or subtracting 1 from each
of that winning set of numbers were chosen 2342 and 1623 times respectively;
similarly, those combinations di�ering from recent winning combinations by exactly
2, or 3 or 4 etc. (where possible) were also chosen very frequently. This transient
popularity has a huge e�ect on a tiny proportion of the possible combinations.
The numbers of jackpot winners can be regarded as data on one randomly selected

combination, on that draw. In 1211 Canadian draws, the jackpot was shared by more
than 10 people only three times:

(a) draw 772 had 15 winners selecting f3 9 17 24 39 43g;
(b) draw 670 had 12 winners selecting the arithmetic progression f22 27 32

37 42 47g;
(c) draw 257 had 11 winners selecting f16 24 25 36 44 45g.

During the period from April 17th, 1991, to August 30th, 1995, the number of tickets
per draw was reasonably stable: in 457 draws, 657 tickets won shares in jackpots. On
130 occasions there was no jackpot winner, on 141 a unique winner, 108 times two
shared the jackpot and 43 times there were three sharing.
Haigh (1995) suggested that the minimum separation m�t� between two successive

numbers in combination t might be a useful indicator of the number of jackpot
winners. Table 4 compares the actual number sharing the jackpot with that expected
on a uniform distribution of gambler choice, given the numbers of tickets sold, and
summed over the ®rst 96 draws. Also included are two other criteria that may be
likely to produce few jackpot winners: whether the winning combination includes
several high numbers (here taken to mean at least two numbers from the ®nal two
rows of the UK ticket, Table 3, part (a)) and whether there is a large interval (here
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TABLE 4

Comparison of actual and expected numbers of jackpot winners in 96 draws, according to
di�erent patterns in the winning combination

(1), criterion (2), frequency
occurred

(3), actual number
sharing jackpot

(4), expected
number sharing

jackpot

Ratio
(3)/(4)

m�t� � 1 47 123 230.3 0.53
m�t� � 2 35 117 168.2 0.70
m�t� � 3 5 45 23.8 1.89
m�t� � 4 4 150 20.8 7.23
m�t� � 5 3 19 14.1 1.34
m�t� � 6 1 7 4.65 1.50
m�t� � 7 1 57 4.93 11.56
Total 96 518 466.8 1.11

At least two
exceed 40

30 88 151.4 0.58

Maximum separa-
tion at least 24

15 46 75.3 0.61



taken as at least 24) either below the lowest winning number, or above the highest or
between two successive winning numbers. This last criterion is strongly associated
with m�t�, both being ways of describing the evenness of the spread of numbers.
Although there is a paucity of data for m�t�5 3, Table 4 supports the contention
that gamblers have chosen their combinations too evenly spread (as Zaman and
Marsaglia (1990) also noted), and with several high numbers chosen insu�ciently
often.

There have been several draws in Canada with no winners of the bonus prize,
thereby identifying six combinations avoided by gamblers in that draw. At the other
extreme, the Canadian bonus prize has been shared by more than 35 tickets only
twice:

(d) draw 73, ®ve jackpot winners and 78 bonus prizesÐf1 5 7 8 11 13g,
bonus 3;

(e) draw 105, one jackpot winner and 75 bonus prizesÐf6 17 29 32
39 40g, bonus 47.

There is plainly some stability in choices over time. Camelot (1995) stated that
45% of players use the same numbers each week, and workplace or family lottery
syndicates tend to stick with `their' numbers. The existence of multidraw tickets,
which enter given combinations for several draws, also aids this stability.

There is great draw-to-draw variation in the proportions of gamblers winning the
various prizes. Since no ticket can win more than one prize, it might be expected that
the correlations between the numbers of prize-winners in di�erent categories would
be near 0, or perhaps slightly negative (more match 3 winners leave fewer tickets to
win match 4 prizes). Table 5 shows how wrong such speculation would be.

The positive correlations shown in Table 5 are further evidence of non-random
choice by gamblers. One source of non-random choice is the use of `wheeling'
methods: a gambler con®nes selections to K favoured numbers �m < K <M� and
uses a commercially produced `wheel' to make a number of choices of m from
those K numbers. Thus his selections have heavy overlap. J. A. Bather (personal
communication) has calculated that so simple an association as large numbers of
gamblers choosing a single number, and mÿ 1 others at random, can also lead to
large positive correlations in numbers of prize-winners.
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TABLE 5

Correlations between the proportions of winners in the various prize categories

Correlations for first 96 draws Correlations excluding weeks 9 and 70{

Bonus Match 5 Match 4 Match 3 Bonus Match 5 Match 4 Match 3

Jackpot 0.77 0.86 0.62 0.43 0.38 0.66 0.47 0.33
Bonus 0.79 0.66 0.51 0.52 0.49 0.40
Match 5 0.88 0.69 0.88 0.70
Match 4 0.92 0.92

{These weeks had 133 and 57 jackpot winners, far more than in any other week, and thus heavily
in¯uencing the jackpot correlations.



Further discussion of wheeling, and the e�ect of the lucky dip facility, are found
later, in Section 5.

4. MODELS OF GAMBLER CHOICE

The data described above come from several sources and cover many years;
gambler behaviour will have varied over this period, and it seems futile to seek a
single model, however complex, to account for all the features noted. But we can
assess to what extent any model captures major features, and what plausible models
can be discarded as grossly misleading.

4.1. Poisson Model
In the UK, the number of tickets sold per draw (Fig. 2) has ranged from about 48

million to 87 million (apart from the exceptional double roll-over draws 60 and 63,
with over 100 million), giving a normal average � of between 3.5 and 6.3 tickets for
each of the M* � 13983816 combinations. With so many gamblers and possible
choices, a Poisson model has an initial attraction: independently for each draw and
each combination t, the actual number choosing t follows a Poisson distribution with
mean �. However, even without the information about non-UK lotteries, the data on
the numbers of UK winners, in any or all categories, reject that model emphatically.
For example, there have been 17 occasions in 96 draws with no jackpot winner, as
against 1±2 expected on a Poisson model; in week 9 there were 133 jackpot winners,
against a mean of 5; Table 5 should show nearly zero correlations on a Poisson
model; Table 4 in Moore (1997) shows that the normalized total number of prize-
winners for each draw is dramatically more variable than would be consistent with a
Poisson distribution.
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Fig. 2. Number of tickets sold each draw (R denotes a roll-over (RR is a double roll-over) and S a
superdraw, i.e. an additional sum has been added to the jackpot fund)



4.2. Models Based on Marginal Frequencies
More sophisticated models have been o�ered by various researchers. In what

follows, P�t� denotes the probability that combination t is chosen on a single ticket,
and f�1, �2, : : :, �Mg are the probabilities of selection of the individual numbers,
with X

i

�i � m:

Stern and Cover (1989) gave conditions under which, as total sales increase, so
P�t� ! P*�t�, where P*�t� maximizes the entropy, ÿ� P�t� lnP�t�, over all distribu-
tions fP�t�g consistent with the marginal frequencies. This led to the multiplicative
model with parameters �1, : : :, �M, in which the probability of combination t is given
by

P*�t� �
Y
i2 t

�i �2�

with the values of f�ig estimated from f�ig. For draw 161, they estimated the relative
frequencies of the supposed most and least popular choices, f3 7 9 11 25 27g
and f20 30 39 40 41 48g respectively, ®nding the former four times as
popular as average, and the latter a quarter as popular. However, the researchers
acknowledged that the popularity of the most popular tickets is underestimated quite
considerably.

Joe (1987) accepted that equation (2) might give a rough approximation to the
distribution of choices but o�ered quite a di�erent way of using f�ig. Let X denote a
distribution over the choices ftg consistent with f�ig, and let X* denote the (Mm)
elements of X, arranged in non-increasing order of the frequencies; we then say that
X1 majorizes X2 if the partial sums of the ®rst j elements of X1* exceed those of X2*, for
all j5 1. Joe suggested that the true distribution of gambler choice would be at the
lower end of this majorization ordering, corresponding to near independence, given
the marginal frequencies. Another criterion that he o�ered was to minimize � P�t�2,
subject to the marginals; for the draw 161 data, he found that this model attached
zero probability to about 6900 of the possible 14 million choices. Its most popular
ticket, f3 5 7 24 25 27g is about 14.5 times as popular as the average ticket.

Later, Joe (1990) suggested a class of models based on minimizing �  fP�t�g for
some convex function  . The choice of  �u� � �u1�� ÿ u�=� for � > 0, or its limit
 �u� � u ln u as �! 0, leads to

P�t� �
X
i2 t

�i
� �1=�

�
, � > 0, �3�

and to equation (2) as �! 0. Here fyg� � max�0, y�, and the parameters f�i:
14 i4Mg are to be estimated from f�ig. He used the data of draw 161 to estimate
f�ig for � � 0, 0.5 and 1 in turn, and then used these estimates to predict the numbers
of prize-winners in the di�erent categories over a sample of 10 draws. These draws
were selected to include some with several popular numbers, and some with several
unpopular numbers. However, the predictions were usually at least two (and often
more than 10) standard deviations away from the actual numbers of match 3 and
match 4 prize-winners, albeit without systematic bias.
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Ziemba et al. (1986) used the sizes of the prizes in the ®rst 207 draws of the
Canadian lottery to estimate the popularity of combinations. For each draw, the
mean return for a random ticket, Y, was calculated as the weighted sum of the
various prizes; the basic model is Y � K � �i (the product being over the actual
numbers drawn). The parameters f�ig were estimated via multiple regression on this
model, after a logarithmic transformation. The results indicated that many com-
binations including the numbers 32, 29, 10, 30 and 40 would yield an average return
well in excess of the stake, but that combinations including several or all of 5, 3, 13,
33, 28 and 7 would give mean returns of as little as 15±20% of the stake. These mean
returns are associated with a large (but unquanti®ed) standard deviation.
Zaman and Marsaglia (1990) considered several models. Their `additive model'

has

P�t� �M*ÿ1 � K
X
i2 t

�
�i
m
ÿ 1

M

�
�4�

where

K � m

�
Mÿ 2

mÿ 1

� �
:

Unfortunately, when t consists of m numbers with small values f�ig, the right-hand
side of equation (4) evaluates to a negative quantityÐthis model demands that the
marginal frequencies are more uniform than is observed. Their `multiplicative model'
repeated equation (2). Finally, they described a `mixture model' in which particular
families of combinations are assigned weights that respect f�ig. For draw 161, their
best ®tting model gives a weight of nearly 70% to a random selection of six numbers
from 49, and (for example) 3.28% to selecting f7g together with ®ve other numbers at
random. But it is hardly better than the Poisson model at predicting numbers of
prize-winners.
Finkelstein (1995) described several ways to estimate the marginal distribution of

gambler choice in the Californian lotto 6/51. Suppose that W�d� is the winning
combination in draw d, that combination t is chosen X�d, t� times and that M�t, r�
denotes those combinations having exactly r elements in common with t. Plainly,

�j �
X
t: j2 t

EfX�d, t�g
.X

t

EfX�d, t�g,

supposed constant as d varies. The ®rst estimate, based on the number of jackpot
winners in D draws, is

�̂j �

X
d

Xfd, W�d�g If j 2W�d�gX
d

Xfd, W�d�g

X
d

If j 2W�d�g

mD=M
: �5�

For any ®nite D, these estimates may not sum to m, but Finkelstein proved that
equation (5) converges to �j almost surely. However, with only one jackpot winner
every other draw on average, convergence is very slow in practice.
His second type of estimator is based on the numbers of winners of the minor

prizes. He showed that, if

,
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�̂j�r� �

X
d

X
t2MfW�d�; rg

X�d, t� If j 2W�d�gX
d

X
t2MfW�d�; rg

X�d, t�

X
d

If j 2W�d�g

mD=M
�6�

then

�̂j�r� ! Mrÿm2

m�Mÿm� �j �
mÿ r

Mÿm
almost surely �7�

(generalizing the previous resultÐput r � m). For his data, with D � 176 and m � 6,
all the estimates (6) when r � 3, 4, 5 or 6 were compatible with the uniform distri-
bution �̂j � 6=51.

His ®nal estimator arose from assuming a multiplicative model for combination
choice, based on the marginals. In draw d, any ticket would win a match 3 prize with
probability p�d�, calculable from f�jg and W�d�; if N�d� tickets are sold, and there are
Y�d� match 3 winners, let

S �
X
d

fY�d� ÿN�d� p�d�g2
�

N�d� p�d�f1ÿ p�d�g �8�

and choose estimates of f�jg to minimize S; the exact model is computationally
infeasible, so the value of p�d� is replaced by a good approximation; from his data,
Finkelstein estimated the order of popularity as

9 3 7 8 11 6 : : : 51 43 49 48 46 50:

He noted that this suggests �i � x �14 i4 12�, �i � y �134 i4 31� and �i � z
�324 z4 51�, with 12x� 19y� 20z � 6 (the `birthdays model' for a 6/51 lotto); this
model with x � 0:1315, y � 0:1196 and z � 0:1075 was also consistent with the data.

Marginal frequencies are of limited help in assessing the frequency of any speci®c
combination. Models using them tend to select the m individually most popular
numbers as the most popular combination, but the researchers are well aware that
there is no reason to expect this to occur. Perhaps the availability of these data from
some lotteries has directed too much attention to them, at the expense of considering
a combination as a whole.

4.3. Models not using Marginal Frequencies
Haigh (1995) suggested a possible family of models of gambler choice that we

develop here. Let fqj: j � 1, : : :, Kg be any probability distribution, and let fCj:
j � 1, : : :, Kg be any K non-empty subsets of theM* combinations. Initially select Cj

with probability qj, and then choose one of the jCjj combinations, all with equal
probability. Any model in this family clearly corresponds to a model in which the
fCjg are pairwise disjoint, but perhaps at the expense of a very large value of K.
However, it is sensible to insist that the union of the fCjg covers all possible
combinations.

This family, as fqj, Cjg vary, is very wide. When K � 1 and jCjj �M*, we have the
Poisson model of random choice among all combinations; with K �M* and jCjj � 1
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for all j, each of the M* combinations has its own probability of selection, but there
is no practical way to test this model. Joe's (1990) model (3) with � � 1 arises by
taking Cj as the combinations that include j, for j � 1, 2, : : :, M. We might also base
selections of fCjg on, for example, the following:

(a) the size of m�t�, the smallest di�erence between two consecutive values of t, so
that 14m�t�4 �Mÿ 1�=�mÿ 1�;

(b) for some cut-o� point T �1 < T <M�, label numbers higher than T as high
numbers; use h�t�, the number of high numbers in t, so that 04 h�t�4 min�m,
Mÿ T� (Cherno� (1981) noted, for a di�erent type of lottery, that numbers
including 0 or 9 tended to be avoided);

(c) the maximum gap between successive members of t;
(d) whether or not 7 is included;
(e) previous winning combinations;
(f) whether all members of t are from di�erent rows on the ticket;
(g) a birthdays model, based on the blocks f1! 12g, f13! 31g and f32! 49g.
For any such model, suppose that we have the data for D draws. By analogy with

equation (5), and with the same notation, one estimate of qj is

q̂j �

X
d

Xfd, W�d�g IfW�d� 2 CjgX
d

Xfd, W�d�g

X
d

IfW�d� 2 Cjg

jCjjD=M*
: �9�

Plainly, q̂j! qj, almost surely, for j � 1, : : :, K, but the estimate will only be reliable
when D is su�ciently large for jCjjD=M* to be large. For arbitrary fCjg, the
estimators (9) will not lead to such straightforward results as expression (7).
However, arguments similar to that leading to equation (8) can yield estimates of
fqjg. Suppose that N�d� tickets are sold in draw d, there are Y�d, k� winners of prize k,
and X�d, j� di�erent combinations in Cj would win prize k. Thus the probability that
a random ticket wins prize k is p�d� � Y�d, k�=N�d�. Our model gives this same
probability as

q�d� �
X

qj X�d, j�=jCjj:
Hence, we might estimate fqjg for a given set fCjg by minimizing either

F�q� �
X
d

fp�d� ÿ q�d�g2 �10�

or

W�q� �
X
d

fY�d, k� ÿN�d� q�d�g2
�

N�d� q�d� �11�

subject to the constraint that fqjg form a probability distribution.
Expression (10) gives equal weight to all draws and reduces to the linear regression

of p�d� on known multiples of fqjg, subject to the equality constraint � qj � 1, and the
inequalities qj 5 0. Judge and Takayama (1966) described how to solve such a

,
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problem by using quadratic programming. Expression (11) is a goodness-of-®t
statistic with null distribution approximately �2

DÿK. Computation with equation (11)
is more complicated than with equation (10) but takes account of the actual numbers
of tickets and prize-winners, not just the proportions.

Broom et al. (1993) and Cannings et al. (1994) have examined the general problem
of the number of local maxima constrained quadratic forms such as equation (10)
can have. There can be at most one local minimum for equation (10) in which every
qj > 0, but, since our speculative model may include classes fCjg that should not be
present, local minima with some qj � 0 are relevant. Plainly, equation (11) may have
several local minima in which every qj > 0.

To ascertain the feasibility of estimating the parameters in such a model, given the
lottery data available, we conducted a small scale experiment on a 4/12 lottery with
two prize categories, in which gamblers did behave according to our model. (There
were 10 classes, with considerable overlap, and probabilities ranging from 0.05 to
0.20.) Both equation (10) and equation (11) worked very well in recovering the
correct model given data from 70 draws, provided that the correct 10 classes were
used; the inclusion of a `rogue' 11th class was detected, that class being given zero
probability. However, if any class actually present was omitted from the model the
procedures performed poorly. It seems possible that if lottery gambler behaviour
does follow our model for some fCj, qjg, and we can identify the fCjg for which qj is
not too small, we can estimate their values successfully.

Encouraged by the simulation study, we sought to use equations (10) and (11) with
data from the ®rst 70 draws in the UK National Lottery, before the lucky dip option
was available. To simplify matters, we combined the match 5 and bonus categories,
so that `match 5' here means simply that exactly ®ve of the six main numbers were
selected. After some experimentation, which consistently threw up certain early
draws as very poor ®ts, we decided to omit the data from draws 1±10, when gamblers
were familiarizing themselves with the game, and perhaps settling into a pattern of
behaviour. We then used the data on the numbers of match 4 prize-winners in draws
11±60 to estimate fqjg for given fCjg, which gives two distinct ways of judging the
adequacy of the model:

(a) comparing actual with predicted match 5 and match 6 results from draws 11±
60;

(b) comparing actual and predicted match 4±6 results from draws 61±70.

It has to be acknowledged that all the models tried gave poor overall ®ts to the
lottery data. We were reasonably successful in ascertaining whether the numbers of
prize-winners would be above or below average, but on several draws with very low
numbers of prize-winners the estimates, although in the right direction, were far too
high. For illustration, the results of ®tting one model are shown in Table 6; for that
model, the correlations of the actual and estimated proportions of match 4±6 winners
over draws 11±60 were 0.788, 0.631 and 0.403 respectively, using equation (11). (For
a Poisson model, the corresponding correlations are ÿ0:124, 0.006 and 0.034.) Table
6 may encourage others to use these methods, with di�erent fCjg, in the hope of
achieving a more satisfactory model. (The match 4 �2

49-value is over 75 000 from
Table 6!)
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5. OTHER MATTERS

On average, the National Lottery returns only 45% of money staked, but a more
appropriate criterion is the comparison of the utility of the £1 stake with the utility of
the added interest in the draw outcome, as well as the expected utility attached to the
tiny chance of an enormous monetary prize. Note that Table 5 shows high positive
correlation between the numbers of prize-winners in the various categories, and so
above average jackpot or bonus prize values will be associated with above average
match 5 and match 4 prizes. Thus unpopular combinations will tend to win higher
prizes in all categories (except the ®xed prize for match 3), and some may have a
mean prize that is in excess of the stake (as Ziemba et al. (1986) indicatedÐsee
above). But this mean is heavily in¯uenced by the sizes of the jackpot and bonus
prizes, which will be won only once in 2 million draws; the use of the mean return on
which to base decisions is questionable.
A gambler buying more than one ticket in the same draw must decide on the extent

of overlap in the numbers chosen across the di�erent tickets. Whatever the overlap,
the average number of prizes depends only on the number of tickets, as does the
probability of a jackpot win, provided only that all the tickets are di�erent. Wheeling
systems are sold as a means of minimizing overlap, when selections are restricted to
just K of the M numbers.
Given x < m < K4M, a wheel identi®es a collection of size R from the (Km)

combinations then possible and may o�er a `guarantee' in one of the forms

(a) if the winning numbers contain x of the K selected, at least one of the R
combinations contains them (sometimes weakened by the addition of `with
probability at least P%') or

(b) if the winning numbers all fall in the K selected, at least one of the R
combinations contains at least x winning numbers (again, sometimes with a
similarly weakening addendum).
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TABLE 6

Best estimates of {qj: 14 j4 11} obtained from equations (11) and (10), given data from
draws 11±60, and the 11 classes listed

Class C Size |C| Estimates of qj using
equation (11) equation (10)

All M* combinations 13983816 0.098 0.130
m�t� � 1 6924764 0.064 0.029
m�t� � 2 3796429 0.123 0.123
m�t� � 3 1917719 0.060 0.050
None over 31 736281 0.128 0.129
None over 40, not all under 32 3102099 0.007 0.023
Maximum separation at most 15 5139260 0.294 0.281
All on di�erent rows 2887500 0.099 0.101
None in outside columns 593775 0.052 0.044
Form an arithmetic progression 216 0.042 0.044
Includes 7 1712304 0.033 0.033

{m�t� is the minimum separation between adjacent members of t; `maximum separation', as in Table 4,
includes the `gap' below the lowest, or above the highest, number chosen.



For given K, m and x, the minimum value of R for which such guarantees can be
given, and how to construct R suitable combinations, are interesting problems in
combinatorial analysis: (a) is termed an (x, m) covering of a K-element set, and if
every subset of size x belongs to exactly one of the R sets we have a Steiner systemÐ
see Cameron (1994), chapter 8. Of some interest is (b) when x � 3, m � 6 and
K � 49, as this corresponds to the minimum number of tickets that must be bought
to ensure at least one prize. There is a claim on the Internet lottery pages (see Section
1) that this minimum is no more than 168. (Football pools gamblers use the same
ideas.)

A wheel with K <M will give an increased chance of more than one prize, but a
reduced chance of at least one prize, compared with the same number of tickets using
all M numbers with less overlap. Thus the mean return for a given outlay from a
wheeling system with K numbers chosen at random will tend to be (marginally)
smaller than using all M numbers to reduce the overlap (if you win more match 4 or
better prizes, the actual prize value decreases).

When the prize fund is boosted by roll-overs or superdraws, a syndicate may be
tempted to seek to buy all, or nearly all, of the possible combinations. There are
practical di�culties in doing so (entries of the form `perm any 6 from 49' are not
permitted), but Finkelstein (1995) reported that an Australian syndicate bought 85%
of the possible tickets to win a 6/44 Virginia lottery. At the time of the ®rst UK
double roll-over, there were reports that any attempt to repeat the feat would be
detected by the organizers and prevented (why?).

Fig. 2 shows how extra sales result from an enhanced jackpot. If we knew the
distribution of the number of jackpot winners for a given level of sales, we could
derive good estimates of the frequency of roll-overs and multiple roll-overs. But the
introduction of the lucky dip facility has had a signi®cant e�ect on this calculation.
Data from Camelot (or the Internet) indicate that about 8% of sales are lucky dips in
a normal week, but in a roll-over week about 20% of extra sales are lucky dips.
When more lucky dip tickets are sold, it is to be expected that more of the M*
combinations are bought at least once, and so the chance of a further roll-over is
reduced. Before the lucky dip was available, the attractively simple M*=�M*�N�
gave a good estimate of the roll-over probability when N tickets are sold.

The main reason why we might desire information on what choices gamblers are
making is to identify unpopular combinations, in the hope of sharing the pool with
fewer people. It is thus essential to note that all data relate to the past and that, as
gamblers learn how others have behaved, previously popular combinations may
become unpopular, and vice versa. However, the fact that 7 has been, by some
distance, the most frequently selected number in the lotteries is public knowledge in
Canada, and yet its popularity there remains high.

Some public excitement was generated in the UK when the O�ce of the National
Lottery (OFLOT) instructed Camelot to change the rules, to remove the guarantee of
a £10 prize for match 3, irrespective of the number of winning tickets. The purpose of
the rule change was to ensure that Camelot did not have to pay out more than 45%
of the proceeds, in the remote event that more than 4.5% of the tickets won a match
3 prize. Without greater knowledge of the true distribution of gambler choice, it is
not possible to give a con®dent estimate of the chance that this will occur. But it
appears far more likely that the proportion of match 3 winners will fall between 3.6%
and 4.5%, which would probably lead to a match 4 prize of less than £10. Should
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further rule changes be made, to ensure that the values of the prizes follow their
natural order?
The strategy of making a truly random choiceÐnot a subjective attempt to mimic

random selectionÐprotects its user against falling into the same thought pattern as
others, and thus considerably reduces the risk of sharing the jackpot with a large
number of others. In the terminology of modern biology, `random choice' is an
evolutionarily stable strategy (see, for example, Maynard Smith (1982)), in the sense
that, if a population as a whole uses that strategy, then no `invader' using a di�erent
strategy can expect to outperform the original population. Riedwyl's (1990) data
suggest that, if there is a systematic non-random way of constructing a combination,
then many gamblers are likely to use it!
Whatever methods gamblers use to choose their combinations, so long as the draw

itself is random, all prize-winning combinations are chosen at random. Hence the
total proportion of tickets sold that win prize C will converge, with probability 1, to
NC=M*, where NC is the number of winning combinations for category C.

6. CONCLUSION

The large quantities of data from the UK and similar lotteries present challenges to
statisticians, but also the opportunity to help public understanding of statistics.
Despite some surprise expressed in the UK when, for example, the number 39 was
not drawn for over a year, and the number 44 was drawn six times running (twice as
the bonus number, then four times as a main ball), statistical tests show no signi®cant
evidence that the numbers drawn are not random. But to detect a small bias, using
only the data from the actual draws, may take many years. If 24 balls each had
probability 10% of being selected, and the other 25 each had probability 14.4%, it
would take over 600 draws for the mean value of test statistic (1) to exceed the
conventional 5% signi®cance level.
It is quite clear that gamblers' choices of combinations have been very far from

random, and Table 4 indicates certain types of combinations that have been selected
much less frequently than average. As yet, no good comprehensive model of gambler
choice has been found.
Commercially available `systems' to play the lottery o�er no advantage over the

strategy of selecting numbers genuinely at random with a home-made device, but
then rejecting any combination (such as 1 2 3 4 5 6, or the last winning set) that there
is good reason to believe will have been chosen by many others.
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APPENDIX A

For each of the three lottery machines used, at least 300 draws were made initially,
supplemented later by data from the live draws and periodically by further test draws. Each
data set is subjected to 31 statistical tests of randomness, as outlined below. The exact null
distribution of any test statistic is usually calculable analytically, or by exhaustive enum-
eration by computer, but some null distributions were estimated by simulation. The
comparison of observed values from the machines with expected values uses one or more of
the Pearson goodness-of-®t statistic � �Oÿ E�2=E, the likelihood ratio statistic 2 � O ln�O=E�
and the Kolmogorov±Smirnov one-sample statistic.

For consistency of notation, denote the seven numbers in the order drawn by fx1, : : :, x7g,
their order statistics by y1 < : : : < y7; write ui � 1� the integer part of �xi ÿ 1�=7, so that
14 ui 4 7. For each test, we describe how the test statistic is calculated. Label the tests T1±
T31:

T1 (runs), X � number of monotone subsequences in fxig, 14X4 6;
T2 (up±down), each successive x-pair is either up (U) �xi < xi�1� or down (D), so there are
64 outcomes such as DDUDUD;

T3 (sum), X � � xi, so 284X4 322;
T4 (variance), X � f7 � x2

i ÿ �� xi�2g=2, so 984X4 12446;
T5 �D2�, X � �x1 ÿ x5�2 � �x2 ÿ x6�2 � �x3 ÿ x7�2, so 34X4 6356;
T6 (hypersphere), X � � �xi ÿ 25�2, so 284X4 3619;
T7 (evens), X � number of even numbers, 04X4 7;
T8±T14, X is the kth largest number �14 k4 7�, so 8ÿ k4X4 50ÿ k;
T15 (poker), look on fuig as a `poker' hand of seven cards, and identify each hand as one of

the 15 possible types, such as `all di�erent', `exactly two pairs' and `six of a kind';
T16 (serial correlation), X is the Pearson coe�cient for the six pairs �xi, xi�1);
T17 (patterns), similar to T2, except label each xi as even (E) or odd (O); there are 128

outcomes such as EEEOEOE;
T18 (frequency), tests overall equality of frequency of all numbers drawn;
T19±T25 (position-speci®c frequency), as for T18, but for the numbers selected in the seven

di�erent positions, separately;
T26 (contiguity), X � maximum number of contiguous values among fyig, so 04X4 7;
T27, T28 (gaps), a draw is a `success' if it has at least one number in common with the ®rst

set drawn; X is the length of the gap between successes; alternatively, the base-line draw
to judge a success is the last draw that yielded a success, instead of always the ®rst draw;

T29±T31 (coupon collecting), X is the number of draws until all possible values of fuig, i.e.
1! 7, have been collected once (T29), twice (T30) or three times (T31).

(Tests T3, T4, T7 and T18 are, of course, the tests on all seven numbers that correspond to
our tests C, D and A.) Tests T1±T26 look at aspects of randomness within one draw; the
other ®ve examine independence between draws. There is, of course, heavy dependence
between the many test statistics in each of these families. How best to use all this information
to decide whether the lottery machines are behaving suitably is an interesting question.
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